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Phase diagrams of the classical Heisenberg fluid within the extended van der Waals approximatio

A. Oukouiss and M. Baus
Facultédes Sciences, Case Postale 231, Universite´ Libre de Bruxelles, B-1050 Bruxelles, Belgium

~Received 13 February 1997!

We use a simple van der Waals theory, suitably extended to the solid phase and to anisotropic interactions,
to study the phase behavior of a system of particles with magnetic exchange interactions. A very rich phase
behavior is found which indicates, in particular, that the ferromagnetic liquid phase is favored by increasing the
range of both the magnetic exchange interactions and of the nonmagnetic interactions. This could well explain
why it turns out to be difficult to find such a phase in simulations which use interactions which are cut off at
finite range.@S1063-651X~97!05806-6#

PACS number~s!: 64.70.2p, 05.70.Fh, 75.10.2b
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I. INTRODUCTION

The relation between the Hamiltonian of a system and
form of the resulting phase diagram is the central theme
equilibrium statistical mechanics@1#. For systems with only
pair interactions, to which we will restrict ourselves here
small change in the range of the pair potential can alre
induce a qualitative change in the topology of the phase
gram@2#. This raises, therefore, the general question of h
many topologically distinct phase diagrams can be gener
from a given family of pair potentials. This question is
practical interest in situations where the pair potential can
some extent be prescribed~e.g., by chemical engineerin
techniques as is of current use in colloid science@3#! and a
particular feature of the phase diagram is being sought
~e.g., the presence of a ferromagnetic fluid phase for
systems considered below!. The determination of a complet
phase diagram is, however, a very demanding task,
therefore, the answer to the question raised is not gene
available. In the particular case of systems of spherical m
ecules with simple pair interactions~of the Lennard-Jones
type, say! convincing evidence has nevertheless been
tained recently that only three topologically distinct types
phase diagrams can be produced by such potentials. If
amplitude of the pair potential is used as temperature s
and the range of the repulsions is used to define the den
scale, then the family of potentials considered did dep
only on one additional parameter, fixing the range of
attractions~relative to the range of the repulsions!. The re-
sults could then be classified into three categories co
sponding to long-ranged, intermediate-ranged, and sh
ranged attractions with phase diagrams exhibiti
respectively, a fluid-fluid critical point, no critical point, an
an ~isostructural! solid-solid critical point. The correspond
ing evidence is partly experimental@4#, partly numerical@5#,
and partly theoretical@6#. Of particular interest here is th
fact that the above scenario can also be faithfully reprodu
by the van der Waals~vdW! theory when the latter is suit
ably extended to the solid phase@7#.

In the present investigation we perform a similar stud
but for somewhat more complex fluids composed again
spherical molecules but endowed now with internal degr
of freedom. When these internal states are of a disc
~quantum mechanical! nature such a system can and has b
551063-651X/97/55~6!/7242~11!/$10.00
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described in terms of an Ising model fluid@8# . Here we will
instead represent the internal states by a continuous clas
spin variable. The resulting model represents then a class
analog of the Heisenberg fluid@9#. Such a system can b
thought of as a first approximation to more realistic syste
with anisotropic interactions. The spin variable could the
for instance, point in the direction of some internal anis
ropy such as a permanent electric or magnetic dipole m
ment. Phase diagrams of realistic dipolar systems, for
ample, are presently under intensive study but the difficul
specific to the dipole-dipole interactions@10# combined with
the difficulties associated with obtaining phase diagra
leads to rather prohibitively elaborate calculations@11#. As
far as is presently known, the Heisenberg fluid and the di
lar systems appear, however, to have many features in c
mon @12#. Here we will therefore consider the Heisenbe
fluid as a simple model for these more realistic systems.
concreteness, we will use the language of magnetism,
consider only ferromagnetic exchange interactions betw
the spins. In order to facilitate the computation of the ma
phase diagrams encountered, we will moreover describe
Heisenberg fluid within the vdW approximation, since t
latter is known to lead to faithful results in the case witho
the magnetic interactions@7#. To this effect we will extend
the vdW theory of@7# so as to allow for both translationa
and orientational degrees of freedom. The resulting theor
similar to that of@9#, except for the treatment of the soli
phases. In@9# the only distinction between the fluid and sol
phases stems from the equation of state used to describ
hard-sphere repulsions, while the attractions are describe
the same cohesion energy in both the fluid and solid pha
Here, as in@7#, the attractions in the solid phase will b
described instead in terms of their static lattice energy@13#.
The main difference from@9# stems then from the fact tha
here the resulting vdW free energies do depend not only
the relative strengths of the interactions but also on the ra
of these interactions. As a consequence, the number of t
logically distinct phase diagrams will be seen to be grea
enhanced.

In Sec. II we define the Heisenberg fluid in more deta
The extended vdW theory is summarized in Sec. III. T
phase diagrams are discussed in Sec. IV while Sec. V c
tains our conclusions.
7242 © 1997 The American Physical Society
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II. CLASSICAL HEISENBERG FLUID

We consider a system of identical molecules whose tra
lational degrees of freedom can be described in terms of
position r of the center of mass of the molecule, while
orientational degrees of freedom will be described in ter
of a classical spin variables, with s251. This spin variable
can be viewed as defining the orientation of some inter
property of the molecule, say its magnetic moment, a
hence the vectors can point in any spatial direction. Th
interaction potential between two such molecul
V(r1 ,r2 ;s1 ,s2), will be taken to be of the form

V~r1 ,r2 ;s1 ,s2!5V0~r 12!1Vm~r 12;s1•s2!, ~1!

where V0(r 12), with r 125ur12r2u, describes the isotropic
~spin-independent! nonmagnetic interactions an
Vm(r 12;s1•s2) the anisotropic~spin-dependent! magnetic in-
teractions. For the nonmagnetic interactions we take
usual vdW form@7#

V0~r 12!5H `, x12,1

2e0f0~x12!, x12>1, ~2!

wheref0(x12)>0, with x125r 12/s andf0(x1251)51, de-
scribes the attractions of amplitudee0.0 between hard
spheres of diameters. For the magnetic term of Eq.~1! we
take exchange interactions@9#

Vm~r 12;s1•s2!5s1•s2V1~r 12!, ~3!

where

V1~r 12!5H 0, x12,1

2e1f1~x12!, x12>1,
~4!

with f1(x12)>0, f1(x1251)51, as appropriate to ferro
magnetic interactions of amplitudee1>0.

It is important to realize that potentials of form~1! contain
no coupling between the translational$r1 ,r2% and orienta-
tional $s1 ,s2% variables. This coupling constitutes~together
with its long range! the major difficulty of the dipole-dipole
interactions~allowing, for instance, chain formation@14#!.
Potentials of form~1! do instead belong to the same fami
as the Maier-Saupe-McMillan potential, viz.V0(r 12)

1V2(r 12)P2(s1•s2), with P2(x)5
1
2(3x

221), a Legendre
polynomial, used to study the formation of liquid-crystallin
phases induced by anisotropic attractions@15#. This mecha-
nism is complementary to the formation of liquid-crystallin
phases via anisotropic repulsions@16#.

In what follows we will use Eqs.~1!–~4! with inverse-
power functions forf l(x12) ~l50,1! . In particular, we will
usef0(x)51/xn, so thatn.3 fixes the range of the isotropi
attractions, andf1(x)51/xk , so thatk.3 fixes the range of
the magnetic interactions. The final pair potential of o
Heisenberg fluid can thus be written

V~r1 ,r2 ;s1 ,s2!5e0H `, x12,1

2$1/x12
n 1s1•s2g/x12

k %, x12,>1
~5!
s-
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where x125r 12/s, while e0 fixes the energy scale an
g5e1 /e0 measures the strength of the magnetic interactio
The reduced potentialV/e0 thus depends on three positiv
parameters$g,n,k%.

III. EXTENDED van der WAALS THEORY

As already stated above, computing phase diagrams
very demanding task, certainly for anisotropic potenti
such as Eq.~5!. In view of this, here we will compute the
free energy of the classical Heisenberg system defined by
~5! within a mean-field van der Waals type of approximati
which extends the considerations of@7# to anisotropic inter-
actions. The resulting theory is very simple and flexible b
nevertheless physically realistic when, as here, the m
goal is to explore the influence of the potential paramete
such as$g,n,k% of Eq. ~5!, on the topology of the phas
diagram.

A. Extension to anisotropic interactions

As is well known, the major steps of the vdW theo
amount to using a free-volume approximation for the con
bution of the hard-sphere repulsions, and a mean-field
proximation for the contribution of the attractions@7#. The
presence of anisotropic interactions of the general fo
( lVl(r 12)Pl(s1•s2) yields a contribution to the average e
ergy which, when treated in the same vdW mean-field
proximation, reads

1
2(

l
E dr1E ds1E dr2E ds2r1~r1 ,s1!Vl~r 12!

3Pl~s1 .s2!r1~r2 ,s2!, ~6!

wherer1(r ,s) is the one-particle density. In view of the fac
that these interactions do not couple the position and s
variables, we can likewise assume thatr1(r ,s) factorizes as

r1~r ,s!5r~r !h~s!, ~7!

wherer(r ) is the center of mass density andh(s) the angular
distribution of the spin variable. For convenience, we ta
r(r ) to be normalized to the average densityr in the volume
V,

E dr

V
r~r !5r, ~8!

andh(s) normalized to 1:

E dsh~s!51, ~9!

where

E ds•••[
1

4pE0
2p

dwE
0

p

du sinu . . . , ~10!

with $u,w% being the polar angles of the unit vectors re-
ferred to a laboratory fixed coordinate system. Using Eq.~7!,
expression~6! factorizes as
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(
l

H 1
2 E dr1E dr2r~r1!Vl~r 12!r~r2!J
3 H E ds1E ds2h~s1!Pl~s1•s2!h~s2!J , ~11!

where the radial factors can be treated as proposed in@7#. As
to the angular factor of Eq.~11!, we will assume the system
to have uniaxial symmetry around the directionn, with
n251, of some infinitesimal external magnetic field so th

h~s![h~s•n![h~u!, ~12!

where s•n5cosu[u, since we can always putn in the
direction of the polarz axis. The angular average^ &, of any
axially symmetric functiong(u) of u then becomes

^g&[E dsh~s!g~s!5E dsh~u!g~u!

5 1
2 E

21

1

du h~u!g~u!, ~13!

where we used Eqs.~10! and~12!. The angular factor of Eq
~11! for l51, as needed for Eq.~3!, now becomes

E ds1E ds2h~s1!s1•s2h~s2!5^s&25^u&2, ~14!

since^s&5^u&n, as a result of the axial symmetry. Note th
^u& is ~proportional to! the average magnetization per pa
ticle.

B. Magnetic vdW free energy

For a system ofN particles enclosed in a volumeV at the
equilibrium temperatureT, the contribution of the angula
degrees of freedom to the Helmholtz free ener
F(N,V,T), will consist of the orientational entropy contribu
tion

NkBTE dsh~s!lnh~s![NkBT^ lnh~u!&, ~15!

as induced by Eq.~7!, kB being Boltzmann’s constant, an
the mean-field exchange energy contribution of Eq.~3!,

^u&2H 1
2 E dr1E dr2r~r1!V1~r 12!r~r2!J , ~16!

as results of Eqs.~6! and ~11!. Introducing the reduced
~Helmholtz! free energy per particle,f5F/Ne0, we have
from Eqs.~15! and ~16! for the magnetic contribution, sa
f̄ m , to f ,

f̄ m5t^ lnh~u!&2gf1^u&2, ~17!

where t5kBT/e0 is the reduced temperatureT, and e0 the
amplitude defined in Eq.~2!, g5e1 /e0, and

f15
1

2NE dr1E dr2r~r1!f1~r 12/s!r~r2!, ~18!
,

wheref1(x12) is the exchange integral of Eq.~4!. In Eq.~18!
we have, as explained in@7#, r(r )[r for a fluid phase and
r(r )[( jd(r2r j ) for a crystalline solid of lattice sites$r j% .
Equation~17! represents the magnetic free energy of a s
tem with a prescribed angular distributionh(u), hence a pre-
scribed magnetization̂u&. In order to find the true equilib-
rium distribution, h0, and the corresponding equilibrium
magnetization̂ u&0, we now minimize Eq.~17! with respect
to h(u). The resulting extremum condition can be written

t@C1 lnh0~u!#52gf1u^u&0 , ~19!

where the constantC is fixed by the normalization condition
~9!. The solution to Eq.~19! can be written in the standar
mean-field form

h0~u!5
equ

N~q!
, ~20!

where

N~q!5 1
2 E

21

1

du equ5
sinhq

q
~21!

fixes the normalization@C5 lnN(q)#, and q is determined
self-consistently by Eq.~19! or, equivalently,

tq52gf1L~q!, ~22!

where we used the identity

^u&05
] lnN~q!

]q
[L~q!, ~23!

with

L~q!5cothq2
1

q
, ~24!

the Langevin function. Switching from the order parame
q to the equilibrium magnetization per particle,m5^u&0, as
our new order parameter we can rewrite the self-consiste
condition ~22! as

m5LS 2g

t
f1mD , ~25!

where we usedq52(g/t)f1m, as follows from Eqs.~22!
and~23!. As can be seen from Fig. 1, Eq.~25! has a unique
solution

m50 for 0<2
g

t
f1<3, ~26!

and also a nonzero solution

0,m<1 for 3,2
g

t
f1 , ~27!

where the borderline

2gf153t, ~28!
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which separates the zero and nonzero magnetization so
tions, defines the Curie line of the phase considered. No
that, whereas in@9# all phases have the same Curie line, he
the fluid and solid phases have a different Curie line dete
mined byf1 of Eq. ~18!. Note also that close to the Curie
line the solution of Eq.~25! reads

m2>
5

9S 2g

t
f123D , 2gf1*3t, ~29!

whereas far away from the Curie line we have

m2>12
t

gf1
, 2gf1@3t, ~30!

where7m does denote here the same ferromagnetic phas
Finally, the magnetic contribution to the free energy o

the equilibrium state, sayf m, can be obtained by evaluating
f̄ m of Eq. ~17! with Eq. ~20!. The result can be written

f m5tH q2 L~q!2 lnN~q!J , ~31!

with q determined from Eq. ~22! or, equivalently,
q52(g/t)f1m, andm determined from Eq.~25!.

C. Total vdW free energy

To obtain the total free energy of the Heisenberg syste
f5 f 01 f m, we add the magnetic free energy,f m of Eq. ~31!,
to the vdW free energy, sayf 0, corresponding to the non-
magnetic interactionV0(r 12) of Eq. ~1!. The latter was dis-
cussed in detail in@7#. Within the vdW approximation we
have

FIG. 1. Graphical representation of the solution of the sel
consistency equation~25!, m5L(q) andq5am, indicating that a
nonzero magnetization (mÞ0) can exist only fora.3.
lu-
te
e
r-

e .
f

,

f 05t@ ln~rL3!21#2t lna~r!2f0 , ~32!

where the first term represents the ideal gas contribu
from the translational degrees of freedom,L being the ther-
mal de Broglie wavelength,r5N/V the average density, an
t5kBT/e0 the reduced temperature. The second term of
~32! represents the free-volume entropy due to the ha
sphere~HS! repulsions of Eq.~2!. In particular, we have~see
@7#!

a~r!5~12r/r0! ~33!

for a fluid phase, with (p/6)r0s
350.495 being the packing

fraction above which the fluid becomes unstable, and

a~r!5F12S r

rcp
D 1/3G3 ~34!

for a solid phase, with (p/6)rcps
350.74 the packing frac-

tion above which a close-packed crystal becomes unsta
Finally, the last term of Eq.~32! represents the contributio
of the nonmagnetic attractions:

f05
1

2NE dr1E dr2r~r1!f0~r 12/s!r~r2!, ~35!

with f0(x12) defined by Eq.~2!. For a fluid phase,r(r )[r ,
and Eq.~35! reduces to the cohesion energy

f052prs3E
1

`

dx x2f0~x!, ~36!

while for a solid phase,r(r )[( jd(r2r j ), and Eq.~35! re-
duces to the lattice energy

f05
1
2(

j
f0~xj !, ~37!

where the sum runs overs the lattice sites,r j /s5xj.1, of a
periodic lattice without defects,r j being the distance of site
j to the site at the origin. Similar expressions hold forf1 of
Eq. ~18!, but withf0(x) of Eq. ~2! replaced byf1(x) of Eq.
~4!. For the inverse-power functions of Eq.~5! we have thus
@see Eq.~36!#

f05
2prs3

n23
, f15

2prs3

k23
~38!

for a fluid phase, and@see Eq.~37!#

f05
an

2 S r

rcp
D n/3, f15

ak

2 S r

rcp
D k/3 ~39!

for a crystal of close-packing densityrcp and Madelung con-
stantam :

am5(
j

S x1xj D
m

, m5n,k, ~40!

with xj>x1 and x1 the reduced nearest neighbor distan
(r5rcp/x1

3).

-
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IV. PHASE DIAGRAMS

Within the extended vdW theory of Sec. III, a system
molecules interacting via the pair potential~5! of the Heisen-
berg model is described by the following reduced Helmho
free energy per particle,f5F/Ne0:

f5t@ ln~rL3!21#2t lna~r!2f01tH q2 L~q!2 lnN~q!J ,
~41!

with q determined by the self-consistency equations

q52
g

t
f1m, m5L~q!, ~42!

where we used the notation of Sec. III. For a system
number densityr and reduced temperaturet5kBT/e0 , Eqs.
~41! and ~42! yield f5 f (r,t), and from f we obtain the
pressurep and chemical potentialm using the well-known
thermodynamic relations

p5e0r
2

] f

]r
, m5e0f1p/r, ~43!

wherem5m/e0 and p5 p̄s3/e0 are the corresponding di

mensionless quantities. Below we will also use the pack
fraction h5(p/6)rs3 as the reduced density variable. Th
two-phase equilibrium conditions can then be written

p1~r1 ,t !5p2~r2 ,t !, ~44!

m1~r1 ,t !5m2~r2 ,t !, ~45!

where the indexes 1 and 2 refer, respectively, to phase
and 2. Equations~44! and ~45! are equivalent to the double
tangent construction on the free energies obtained from E
~41! and~42!. When more then one transition is possible, t
equilibrium transition is found by constructing the conve
envelope to the free energies.

A. Paramagnetic and ferromagnetic fluid phases

We first consider the case where both phases 1 and
Eqs.~44! and ~45! are fluid phases. In this case the therm
dynamics follows from Eqs.~41! and~42! by using Eq.~33!
for a(r) and (38) forf0 andf1. Simple explicit expres-
sions can again be obtained, such as

p

re0
5

t

a~r!
2f02m2gf1 ~46!

for the pressure of the fluid phases. In Eq.~46! the equilib-
rium magnetization,m5m(r,t), is obtained by solving Eq.
~42!, hence yieldingp5p(r,t), as needed for Eq.~44!, and
similarly for m5m(r,t) by using Eq.~43!. Here the Curie
line t5(2/3)gf1 of Eq. ~28! becomes a straight line in th
r-t plane,t5(4p/3)(grs3/k23), or

t5ḡh, ḡ5
8

k23
g, ~47!
f

z

f

g

1

s.

of
-

whereh is the packing fraction. It then results from Eqs.~26!
and ~27! or Fig. 1 that fort/h.ḡ the fluid phases are para
magnetic (m50), while for t/h,ḡ we havemÞ0 and the
fluid phases are hence ferromagnetic. On the Curie l
t/h5ḡ, we have a paramagnetic-ferromagnetic transit
which is continuous fort.t1 and discontinuous fort,t1
where$t5t1 ,h5h1% denote a tricritical point~TCP! where
the compressibility diverges (]p/]r50). Using Eqs.~46!
and ~47!, we obtain, for this TCP,

t15ḡh1 , h15S 12
1

S 521
3

g* D
1/2D h0 , ~48!

where h05(p/6)r0s
3.0.495 as in Eq. ~33!, and

g*5gf1 /f0 or

g*5g
n23

k23
5
n23

8
ḡ, ~49!

where we used Eq.~38!. The point of the Curie line~47!
where the compressibility diverges is termed tricritical,
though in zero external field the ferromagnetic phase
6m degenerate. In the paramagnetic region (m50), Eq.
~46! also embodies the standard liquid-gas transition@7#,
with terminates in the vdW critical point~CP! with coordi-
nates (tc ,hc):

tc5
32

3~n23!
hc , hc5

h0

3
. ~50!

Combining this paramagnetic gas~pg!–paramagnetic liquid
~pl! transition with the above paramagnetic fluid~pf!–
ferromagnetic fluid~ff ! transition, one finally obtains the
phase diagram of the fluid phases in the entireh-t plane.
Using Eqs.~44! and ~45!, it is easily seen that this phas
diagram does not depend on the three parameters$g,n,k%
separately but only on the combinationg*5g(n23)/
(k23). According to the value ofg* there are three topo
logically distinct types of phase diagrams~see Fig. 2!. For
0,g*,g1*.0.55 all the phase diagrams have apg-pl tran-
sition at the higher temperatures, and a first-orderpg-f l ~fer-
romagnetic liquid! transition at the lower temperatures wi
the pg-pl transition ending in a CP and the first-orderpg-
f l transition ending in a critical end point where the Cu
line describing the continuousp f-f f transition hits the first-
order phase boundary. Forg1*,g*,g3*.0.85 all the phase
diagrams have apg-f l transition for temperatures below tha
of a pg-pl- f l triple line. For temperatures above this trip
point temperature there is both apg-pl transition ending in a
CP and a first-orderpl-f l transition ending in a TCP. Fo
g1*,g*,g2*.0.727 the TCP temperature is below the C
temperature, whereas the converse is true
g2*,g*,g3* . Finally, for g3*,g* all the phase diagram
contain only a first-orderpg- f l transition ending in a TCP
above which it becomes a continuousp f-f f transition along
the Curie line. This scenario is identical to the one found
Hemmer and Imbro@9#, except for the values of$g1* ,g3* %.
Indeed, for fluid phases the present theory is identical to
of Hemmer and Imbro, except for the fact that they did u
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FIG. 2. The three topologically distinct types of phase diagrams in the reduced temperature (t5kBT/e0) reduced density
@h5(p/6)s3r# plane as obtained from the free energy~41! when only fluid phases are considered.~a! A critical point ~CP: open square! is
seen to separate the low-temperature paramagnetic gas~pg! and paramagnetic liquid~pl! phases from the high-temperature paramagn
fluid ~pf! phases. The Curie line~dashed line! which separates the paramagnetic fluid~pf! from the ferromagnetic fluid~ff ! phases ends in
a critical end point~CEP: black dot!, below which the pg-pl and pf-ff transitions are replaced by a pg-fl~ferromagnetic liquid! transition.
~The diagram shown here corresponds tog*50.3.) ~b! The CEP of diagram~a! has been transformed into a tricritical point~TCP: open
circle! where the pl-fl transition ceases to be first order and becomes continuous at higher temperatures. The TCP temperature is
CP temperature forg*<0.73, and above it forg*.0.73. There is thus more than one type of phase diagram in this category. In all
there is also a pg-pl-fl triple line.~The diagram shown corresponds tog*50.7.) ~c! The pg-pl transition of~b! has become metastable, an
only the pf-ff transition survives.~The case shown corresponds tog*51.2.)
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be
the Carnahan-Starling equation of state to describe the
fluid instead of the simple free-volume expression~33! used
here. This difference shifts the$g1* ,g3* % values from
$0.55,0.85%, as found here, to$0.38,0.63%, as found by them.
The Carnahan-Starling equation of state is clearly superio
the free-volume approximation~33! but the latter keeps the
calculations simple enough to allow us to evaluate the co
dinates of the TCP@see Eq.~48!# and CP@see Eq.~50!#
explicitly, whereas the former does not. Finally, it is al
worthwhile observing that the present scenario is qual
tively identical to the one predicted by Zhang and Wido
@16# and Groh and Dietrich@11# for the fluid phases of dipo
lar systems.

B. Paramagnetic and ferromagnetic solid phases

From Sec. IV A it is seen that forg3*,g* the p f-f f
transition preempts thepg-pl transition. In a similar manne
S

to

r-

-

the fluid(f ) –solid(s) transition can still preempt thisp f-f f
transition. To answer the question whether a~stable! ferro-
magnetic fluid phase is present in the phase diagram,
thus essential to include both fluid and solid phases. Be
considering the complete phase diagram in Sec. IV C,
devote this section to the case where both phases in Eqs.~44!
and ~45! are solid phases. The thermodynamics is then s
given by Eqs.~41! and ~42!, but now using Eq.~34! for
a(r) and Eq.~39! for f0 andf1. The stable lattice structure
is seen to be a compact lattice which we take to be of
face-centered-cubic~fcc! type. The resulting solid-solid tran
sitions are then isostructural fcc-fcc transitions@7#. The cor-
responding equation of state of these solids can again
obtained in simple terms from Eq.~43!, yielding

p

re0
5

t

12~r/rcp!
1/32

n

6
an~r/rcp!

n/32
k

6
ak~r/rcp!

k/3m2g,

~51!
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FIG. 3. The same as Fig. 2, but for the case where Eq.~41! is
restricted to solid phases only. Here theg-l transition of Fig. 2 is
replaced by an iso-structural transition between an expanded
~es! and a condensed solid~cs! of the same compact crystal stru
ture. The paramagnetic~expanded or condensed! solid phases~ps!
are separated from the ferromagnetic solid~fs! phases by a new
Curie line~dashed line!. ~a! A new CP~filled square! terminates the
pes-pcs transition, while a new CEP~black dot! terminates the Cu-
rie line of the solids.~The case shown corresponds tog50.3 and
k5n56). ~b! A new TCP ~filled circle! terminates the first-orde
pcs-fs transition. There also is a pes-pcs-fs triple line.~The case
shown corresponds tog50.4 andk5n56). ~c! Only the ps-fs
transition survives.~The case shown corresponds tog50.6 and
k5n56).
wherea r is the Madelung constant of the fcc lattice for a
inverse power potential of indexr5(n,k). As can be seen
from Eq. ~40!, a r tends to 12, the number of nearest neig
bors of the fcc lattice, for larger values. Here the Curie line
(28) becomes

t5ĝhk/3, ĝ5 1
3 akg/hcp

k/3 ~52!

with hcp[(p/6)rcps
35p/3A2for a compact lattice. For

t/hk/3.ĝ, the solid phases are paramagnetic (m50), while
for t/hk/3,ĝ, they are ferromagnetic (mÞ0). On the Curie
line, t5ĝhk/3, the paramagnetic solid~ps! ferromagnetic
solid ~fs! transition becomes continuous above a new TCP
coordinates (t2 ,h2), given by Eq.~51! as

t25ĝh2
k/3, h25x3hcp ~53!

with x a solution of

S 12
2

3
xD

~12x!2
5
5

2S k3D
2

1

nS 11
n

3Dan

2gak
xn2k. ~54!

Whenn5k, Eq. ~54! yields

x5S 3K21

3K D2H S 3K21

3K D 22SK21

K D J 1/2, ~55!

with

K5
5

2S k3D
2

1
k

2gS 11
k

3D . ~56!

In the region of the paramagnetic solids (m50) there is an
isostructural transition between a paramagnetic expan
solid ~pes! and a paramagnetic condensed solid~pcs! which
terminates in a new CP of coordinates (tc8 ,hc8):

tc85nS 11
n

3Dany
n

~12y!2

S 12
2

3
yD , hc85y3hcp, ~57!

with y given by

y[S 5n14

4~n21! D2H S 5n14

4~n21! D
2

2S 3n

2~n21! D J 1/2. ~58!

Whereas the overall behavior of the solid-solid phase d
grams is similar to that of the fluid-fluid phase diagram
(tc ,hc) and (t1 ,h1) being replaced by (tc8 ,hc8) and
(t2 ,h2), there are two main differences. Because the co
sion energy of the fluid phase is linear in the density@see Eq.
~38!#, the Curie line of the fluid phases@see Eq.~48!# is a
straight line in thet2h plane, whereas the Curie line of th
solid phases@see Eq.~52!# has a nonzero curvature, due
the nonlinear density dependence of the lattice energy@see
Eq. ~39!#. Here the Curie lines of the fluid and solid phas
are thus different, whereas in@9# they are identical becaus
the same cohesion energy was used for both the fluid
solid phases~a practice which goes back to Longuet-Higgi
and Widom@17#!. The most important difference, howeve

lid
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FIG. 4. The topologically distinct types of complete phase diagrams obtained from Eq.~41! by allowing for both fluid and compact solid
phases. The case shown corresponds to a situation where both the magnetic (k54) and nonmagnetic (n56) interactions are long ranged
The strengths of the magnetic interaction are~a! g50, ~b! g50.04,~c! g50.15,~d! g50.23,~e! g50.25, and~f! g50.3. The meaning of
the symbols is the same as in Figs. 2 and 3.
te

ia
de

m,
r

stems from the fact that~for the same reason! the phase
diagrams of the solids no longer depend on the parame
$g,k,n% through the single combinationg* of Eq. ~49!, but
they do now depend explicitly on the ranges of the potent
~as set here for the inverse power potentials by their in
rs

ls
x

k and n). Therefore we now have again a phase diagra
with a CP for 0,g,g1(k,n), with both a CP and a TCP fo
g1(k,n),g,g2(k,n) and with a TCP forg2(k,n),g, but
the threshold values$g1 ,g2% now do depend explicitly on
k andn. For instance, forg1(k,n) we find g1(4,6)50.192,
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FIG. 5. The same as Fig. 4 but for long-ranged magnetic interactions (k56) and intermediate-ranged nonmagnetic interactio
(n512). The strengths of the magnetic interaction are:~a! g50, ~b! g50.06, ~c! g50.3, ~d! g51.6, and~e! g53.4.
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g1(6,6)50.325,g1(12,6)50.365, whereas forg2(k,n) we
haveg2(4,6)50.254,g2(6,6)50.52, andg2(12,6)50.955.
An example of the three topologically distinct types of pha
diagrams is shown in Fig. 3.

C. Fluid and solid phases

In order to obtain a complete phase diagram we now c
sider the case where in Eqs.~44! and~45! phase 1 is a fluid
e

-

phase and phase 2 a solid phase, and combine these
solid transitions with the fluid-fluid and solid-solid trans
tions already considered in the two previous sections. Sta
differently, the fluid-fluid transitions obtained from Eqs.~44!
and ~45! correspond to double tangent constructions on
free energy~41! when the latter is evaluated for the flui
phase, and similarly for the solid-solid transitions when E
~41! is evaluated for the solid phase, whereas the fluid-so
transitions correspond to double tangent constructions
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FIG. 6. The same as Fig. 4 but for intermediate-ranged magnetic interactions (k560) and short-ranged nonmagnetic interactio
(n580). The strengths of the magnetic interaction are:~a! g50, ~b! g50.1, ~c! g50.55, and~d! g50.7.
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tween the free energy of the fluid and that of the solid. Wh
more than one double tangent construction is possible,
complete phase diagram is obtained from the convex en
lope to the free energies. Since the solid-solid transitions
depend on the three parameters$g,n,k% separately, so will
the complete phase diagrams. We know from@7# that when
g50 there are three topologically distinct types of pha
diagrams according to the value ofn (k is irrelevant when
g50). For long-ranged interactions (3,n,n1.7.6) the
phase diagram exhibits the (tc ,hc) critical point of Eq.~50!,
for intermediate-ranged interactions (n1,n,n2.67) there
is no critical point, whereas for short-ranged interactio
(n2,n) it exhibits the (tc8 ,hc8) critical point of ~57!. We
now take an value corresponding to each category se
rately~sayn56, 12, and 80! and start increasing the value o
g. The sequence of phase diagrams generated in this
depends still on the value ofk. Here it will suffice to con-
sider a few specifick values which nevertheless cover all th
possible topologically distinct cases. First we consider
long (n56)–long (k54) case where both the value ofn
andk correspond to long-ranged forces. This case alone g
erates~see Fig. 4! all the phase diagrams obtained in@9#.
Three of them contain a region where the ferromagnetic
uid phase is stable. Next we consider the intermed
n
he
e-
o

e

s

-

ay

e

n-

-
te

(n512)–long (k56) case~see Fig. 5!. Here there are two
new types of phase diagrams containing a stable ferrom
netic liquid. Finally we consider the short (n580)
–intermediate (k560) case~see Fig. 6! where none of the
new types of phase diagrams contains a stable ferromag
liquid. The latter phase is thus clearly seen to be favored
increasing the range of the nonmagnetic and magnetic in
actions.

D. Conclusions

We have considered the phase behavior of a classical
tem of particles interacting via both~isotropic! nonmagnetic
interactions and~anisotropic! magnetic exchange interac
tions. Such a system constitutes an off-lattice or continu
version of the well-known Heisenberg model of magneti
@1# and, as such, could be considered as a rough approx
tion to more realistic systems. This Heisenberg fluid
known, for instance, to mimic rather well the behavior
dipolar fluids without having to cope with the difficultie
intrinsic to such fluids@10,12#. It is thus a good candidate fo
studying the influence of the potential parameters on the
currence of a ferromagnetic liquid in the phase diagram.
obtain these phase diagrams, here we used a simple e
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sion of the original van der Waals theory@7#. As is well
known, in van der Waals theory the free energy is written
the sum of a free-volume entropy term describing the rep
sions and a mean-field energy term describing the attract
@2#. What distinguishes the van der Waals theory used h
@7# from other approaches@9,17# is the fact that both the
free-volume entropy and the mean-field energy have a
ferent density dependence according to whether the p
considered is a fluid or a solid phase. In the presence of
magnetic exchange interactions this difference impli
moreover, that the Curie lines of the fluid and solid pha
have a different density dependence. The resulting theor
nevertheless very simple and flexible. It is also fairly realis
since the resulting phase diagrams mimic very closely th
obtained from more sophisticated theories, whenever av
e,

s

-

. E
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s,

r

s
l-
ns
re
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il-

able @6,12#. On this basis we have found that the phase d
grams do depend not only on the relative strength of
magnetic and nonmagnetic interactions but also on the ra
of these interactions. For instance, it is found that at giv
relative strength of the magnetic interaction, the ferrom
netic fluid phase is favored by increasing the range of eit
the magnetic or nonmagnetic interactions. This in turn co
well explain why simulations using interactions which a
cut off at finite range@12# have difficulties in finding~stable!
ferromagnetic fluid phases.
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