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Phase diagrams of the classical Heisenberg fluid within the extended van der Waals approximation
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We use a simple van der Waals theory, suitably extended to the solid phase and to anisotropic interactions,
to study the phase behavior of a system of particles with magnetic exchange interactions. A very rich phase
behavior is found which indicates, in particular, that the ferromagnetic liquid phase is favored by increasing the
range of both the magnetic exchange interactions and of the nonmagnetic interactions. This could well explain
why it turns out to be difficult to find such a phase in simulations which use interactions which are cut off at
finite range [S1063-651X97)05806-§

PACS numbes): 64.70—p, 05.70.Fh, 75.16:b

[. INTRODUCTION described in terms of an Ising model flJid] . Here we will
instead represent the internal states by a continuous classical
The relation between the Hamiltonian of a system and thepin variable. The resulting model represents then a classical
form of the resulting phase diagram is the central theme oénalog of the Heisenberg flui®]. Such a system can be
equilibrium statistical mechanid4]. For systems with only thought of as a first approximation to more realistic systems
pair interactions, to which we will restrict ourselves here, awith anisotropic interactions. The spin variable could then,
small change in the range of the pair potential can alreadfor instance, point in the direction of some internal anisot-
induce a qualitative change in the topology of the phase diaropy such as a permanent electric or magnetic dipole mo-
gram[2]. This raises, therefore, the general question of hownent. Phase diagrams of realistic dipolar systems, for ex-
many topologically distinct phase diagrams can be generategmple, are presently under intensive study but the difficulties
from a given family of pair potentials. This question is of specific to the dipole-dipole interactiofis0] combined with
practical interest in situations where the pair potential can tqne (ijfficulties associated with obtaining phase diagrams
some extent be prescribe@.g., by chemical engineering |ga4s to rather prohibitively elaborate calculatidag]. As
techniques as is of current use in colloid scief@} and a ¢4/ 45 is presently known, the Heisenberg fluid and the dipo-

particular feature of the phase diagram is being sought fOf’ar systems appear, however, to have many features in com-

éegéngzecgr:(saijeer;g?j g;; vﬂtigodn;tae%rrﬁtr:;t%ﬂ%fp;]izfn f?étethﬁwon [12]. Here we will therefore consider the Heisenberg
y . el inatl . P fluid as a simple model for these more realistic systems. For
phase diagram is, however, a very demanding task, and,

therefore, the answer to the question raised is not general@onc'reteness, we wil use'the Ianguagg of mqgneﬂsm, and
available. In the particular case of systems of spherical mol: onsider only ferromagnetic exchange interactions between

ecules with simple pair interactior®f the Lennard-Jones the spins. In order to facilitate the cpmputation of the.many.
type, say convincing evidence has nevertheless been Obphgse dlagram_s en_co_untered, we will moreover de_scrlbe this
tained recently that only three topologically distinct types of€isenberg fluid within the vdW approximation, since the
phase diagrams can be produced by such potentials. If tHatter is known to lead to faithful results in the case without
amplitude of the pair potential is used as temperature scal@€ magnetic interactions]. To this effect we will extend
and the range of the repulsions is used to define the densit§ie¢ vdW theory of[7] so as to allow for both translational
scale, then the family of potentials considered did depen@nd orientational degrees of freedom. The resulting theory is
only on one additional parameter, fixing the range of thesimilar to that of[9], except for the treatment of the solid
attractions(relative to the range of the repulsionhe re- phases. 1i9] the only distinction between the fluid and solid
sults could then be classified into three categories corregghases stems from the equation of state used to describe the
sponding to long-ranged, intermediate-ranged, and shortiard-sphere repulsions, while the attractions are described by
ranged attractions with phase diagrams exhibitingthe same cohesion energy in both the fluid and solid phases.
respectively, a fluid-fluid critical point, no critical point, and Here, as in[7], the attractions in the solid phase will be
an (isostructural solid-solid critical point. The correspond- described instead in terms of their static lattice endadg}.
ing evidence is partly experimental], partly numerica[5],  The main difference froni9] stems then from the fact that
and partly theoretical6]. Of particular interest here is the here the resulting vdW free energies do depend not only on
fact that the above scenario can also be faithfully reproducethe relative strengths of the interactions but also on the range
by the van der WaalsvdW) theory when the latter is suit- of these interactions. As a consequence, the number of topo-
ably extended to the solid phak#. logically distinct phase diagrams will be seen to be greatly
In the present investigation we perform a similar study,enhanced.
but for somewhat more complex fluids composed again of In Sec. Il we define the Heisenberg fluid in more detail.
spherical molecules but endowed now with internal degree¥he extended vdW theory is summarized in Sec. lll. The
of freedom. When these internal states are of a discretphase diagrams are discussed in Sec. IV while Sec. V con-
(quantum mechanicahature such a system can and has beeitains our conclusions.
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[l. CLASSICAL HEISENBERG FLUID where x;,=r,/o, while ¢, fixes the energy scale and
v= €1/ €y measures the strength of the magnetic interactions.

We consider a system of identical molecules whose tran The reduced potential/e- thus depends on three positive
lational degrees of freedom can be described in terms of th P €0 P P
parametergy,n,k}.

positionr of the center of mass of the molecule, while its
orientational degrees of freedom will be described in terms
of a classical spin variablg with s°=1. This spin variable Ill. EXTENDED van der WAALS THEORY

can be viewed as defining the orientation of some internal ag already stated above, computing phase diagrams is a
property of the molecule, say its magnetic moment, anq,ery demanding task, certainly for anisotropic potentials
hence the vectos can point in any spatial direction. The g,ch as Eq(5). In view of this, here we will compute the

interaction  potential between two such moleculesree energy of the classical Heisenberg system defined by Eq.

V(r1.r2:s1,%), will be taken to be of the form (5) within a mean-field van der Waals type of approximation
_ _ which extends the considerations|@f to anisotropic inter-
V(ry,r2581,8) =Vo(ra) + Vin(riz;81- ), (D actions. The resulting theory is very simple and flexible but

nevertheless physically realistic when, as here, the major
goal is to explore the influence of the potential parameters,

(spin-independeiit  nonmagnetic interactions and ch a nk! of Ea. (5). on the topoloav of the phase
Vn(riz:s-S,) the anisotropidspin-dependenimagnetic in- Z?agrani{% ki a ), pology phas

teractions. For the nonmagnetic interactions we take the
usual vdW form[7]

where Vy(r12), with r,=|r;—r,|, describes the isotropic

A. Extension to anisotropic interactions

0, X1o<1 As is well known, the major steps of the vdW theory
Vo(r1d =1 — eypo(X12), X1=1, (20 amount to using a free-volume approximation for the contri-
bution of the hard-sphere repulsions, and a mean-field ap-
proximation for the contribution of the attractioh®]. The
where¢g(x12) =0, with X;,=r1,/0 and¢o(x1,=1)=1, de- presence of anisotropic interactions of the general form
scribes the attractions of amplitude,>0 between hard 3,V|(r)P(s;-s,) yields a contribution to the average en-
spheres of diameter. For the magnetic term of Eq1l) we  ergy which, when treated in the same vdW mean-field ap-

take exchange interactiofi8] proximation, reads
Vi(r12:81-$) =51 - SV1(r), 3
r(fa2i8 %) =9 %Valr) ® %El fdrlf dslf drzf ds,pq(ry,s1)V(rin)
where
XP(s;. r,,s), (6
0, X1,<1 1(51-%)p1(r2,%), (6)
ValriD) = —€1¢1(X12), X12=1, “) wherep,(r,s) is the one-particle density. In view of the fact

that these interactions do not couple the position and spin
with ¢1(X12)=0, ¢1(X;,=1)=1, as appropriate to ferro- variables, we can likewise assume tpafr,s) factorizes as
magnetic interactions of amplitudg=0.

It is important to realize that potentials of forfh) contain p1(r,8)=p(r)h(s), ™

no coupling between the translatiorfal, ,r,} and orienta-
tional {s;,s,} variables. This coupling constitutétogether
with its long rangé the major difficulty of the dipole-dipole
interactions(allowing, for instance, chain formatiofi4]).
Potentials of form(1) do instead belong to the same family ™’
as the Maier-Saupe-McMillan potential, vizVq(r 1)

dr
+V,(r19)Pa(s;-S,), with P,(x)=3(3x>—1), a Legendre f v P(=p, €)
polynomial, used to study the formation of liquid-crystalline
phases induced by anisotropic attracti¢hS]. This mecha-
nism is complementary to the formation of liquid-crystalline
phases via anisotropic repulsiofis.

In what follows we will use Eqgs(1)—(4) with inverse- J dsh(s)=1, 9
power functions forg,(x15) (1=0,2) . In particular, we will
usegy(x) = 1/x", so thain> 3 fixes the range of the isotropic where
attractions, andb,(x) = 1/x¥ , so thatk>3 fixes the range of
the magnetic interactions. The final pair potential of our 1 (2= w _
Heisenberg fluid can thus be written f ds - d@fo désing .. .,

wherep(r) is the center of mass density an(k) the angular
distribution of the spin variable. For convenience, we take
p(r) to be normalized to the average dengitin the volume

andh(s) normalized to 1:

=270 (10

* X12<1 with {6,¢} being the polar angles of the unit vectere-
0 —{1X],+ s - szylx'Iz}, X12,=1 ferred to a laboratory fixed coordinate system. Using(E£q.
(5) expressior(6) factorizes as

V(rlirZ;slvs'Z):e
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L whereg,(X,,) is the exchange integral of E@l). In Eq.(18)

ZI {zf drlJ drzp(rl)V|(r12)P(r2)] we have, as explained 7], p(r)=p for a fluid phase and
p(r)=Z;8(r—r;) for a crystalline solid of lattice sitelg;} .
Equation(17) represents the magnetic free energy of a sys-

f dSlf dSzh(S1)P|(Sl-Sz)h(Sz)]' (11  tem with a prescribed angular distributibu), hence a pre-
scribed magnetizatiofu). In order to find the true equilib-

rium distribution, hy, and the corresponding equilibrium

magnetizationu),, we now minimize Eq(17) with respect

to h(u). The resulting extremum condition can be written

X

where the radial factors can be treated as proposgd|.is
to the angular factor of Eq11), we will assume the system
to have uniaxial symmetry around the direction with

2: - . . - . .
n =1, of some infinitesimal external magnetic field so that {{C+Inho(U)]=2ydsu(u)o, (19)
h(s)=h(s-m=h(u), (12 where the constar® is fixed by the normalization condition
(9). The solution to Eq(19) can be written in the standard

where s-n=cos#=u, since we can always put in the .
mean-field form

direction of the polarz axis. The angular averade, of any

axially symmetric functiorg(u) of u then becomes gdu
ho(U)= ——, 20
<9>Ef dsh(s)g(s)=f dsh(u)g(u)
where
1
=1] duh(u)g(u), (13 1 sin
2j—1 g N(q)=%f duequzTm (21
-1
where we used Eq$10) and(12). The angular factor of Eq. o _ .
(11) for I=1, as needed for Eq3), now becomes fixes the normalizatiof C=InN(q)], andq is determined
self-consistently by Eq(19) or, equivalently,
| a5 [ dshiss shis=(92=w?  aa tq=2ygL (), @
since(s)=(u)n, as a result of the axial symmetry. Note that Where we used the identity
(u) is (proportional t9 the average magnetization per par- JInN(q)
ticle. (U)o= =L(q), (23
aq
B. Magnetic vdW free energy with
For a system oN particles enclosed in a voluméat the
equilibrium temperaturdl, the contribution of the angular _ B E
degrees of freedom to the Helmholtz free energy, L(q)=cothy q’ (24)

F(N,V,T), will consist of the orientational entropy contribu-
tion the Langevin function. Switching from the order parameter
g to the equilibrium magnetization per particla=(u),, as

_ our new order parameter we can rewrite the self-consistency
NkBTJ dsh(s)Inh(s)=NkgT{Inh(u)), (15 condition (22) as
as induced by Eq(7), kg being Boltzmann’s constant, and y
the mean-field exchange energy contribution of &), m=L|{ 2+ ¢1m|, (25)
u 2[;f dr fdr FOVA(r r)t 16 where we usedy=2(vy/t) »1m, as follows from Eqs(22)
iz ! 2p(1)Valr12p(r2) 18 and(23). As can be seen from Fig. 1, E@®5) has a unique
solution

as results of Eqgs(6) and (11). Introducing the reduced
(Helmholtz free energy per particlef=F/Ney, we have

Y
from Egs.(15) and (16) for the magnetic contribution, say m=0 for 0<27¢1<3, (26)
fm, tof,
— ) and also a nonzero solution
fn=t{INh(u)) = yp(u)*, (17
Y
wheret=KkgT/¢, is the reduced temperatufie and ¢, the 0<ms<1 for 3<2+ ¢y, (27)

amplitude defined in Eq2), y=¢€;/¢y, and
where the borderline

1
ti=o | 002 [ drapr0 st pirn, (18 2yy-3t, @9
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FIG. 1. Graphical representation of the solution of the self-

consistency equatio®5), m=L(q) andg=am, indicating that a
nonzero magnetizatiom{0) can exist only fom>3.

fo=t[In(pA®)—1]—tIna(p) - ¢o, (32

where the first term represents the ideal gas contribution
from the translational degrees of freedofm being the ther-
mal de Broglie wavelengtip=N/V the average density, and
t=kgT/ ey the reduced temperature. The second term of Eq.
(32 represents the free-volume entropy due to the hard-
sphergHS) repulsions of Eq(2). In particular, we havésee

(7]

a(p)=(1-plpo) (33

for a fluid phase, with £/6)po0°=0.495 being the packing
fraction above which the fluid becomes unstable, and

1/313
AT e

cp

a(p)=

for a solid phase, with £/6)p.,0°=0.74 the packing frac-
tion above which a close-packed crystal becomes unstable.
Finally, the last term of Eq(32) represents the contribution

of the nonmagnetic attractions:

1
ij drlfdr2p<rl>¢o<r12/cr>p<r2>, (35

with ¢o(X1) defined by Eq(2). For a fluid phasep(r)=p ,

which separates the zero and nonzero magnetization soland Eq.(35) reduces to the cohesion energy
tions, defines the Curie line of the phase considered. Note

that, whereas ifi9] all phases have the same Curie line, here _> 3 °°d 2
the fluid and solid phases have a different Curie line deter- bo=2mpo , 9X $o(X),

mined by ¢, of Eq. (18). Note also that close to the Curie
line the solution of Eq(25) reads

2y =3, (29

5 vy
2"l ol p —
me= 9<2t ¢,—3
whereas far away from the Curie line we have

t
m2=1— ——, 2yd¢,>3t, 30
v YP1 (30)

(36)

while for a solid phasep(r)=Z=;(r —r;), and Eq.(35) re-
duces to the lattice energy

¢o=%; bo(X), (37)

where the sum runs overs the lattice sitggdo=x;>1, of a
periodic lattice without defects, being the distance of site
j to the site at the origin. Similar expressions hold §gr of
Eq. (18), but with ¢o(x) of Eq. (2) replaced byp,(x) of Eq.

where=m does denote here the same ferromagnetic phase(4)- For the inverse-power functions of E&) we have thus
Finally, the magnetic contribution to the free energy of[see Eq(36)]

the equilibrium state, saf;,, can be obtained by evaluating
fm of Eq. (17) with Eq. (20). The result can be written

fm=t[guq>—mw<q>j, 3D

with q determined from Eq.(22) or, equivalently,
g=2(y/t) ¢1m, andm determined from Eq(25).

C. Total vdW free energy

2mpo’ 2mpo’
¢0= n—3 ’ 1= k_3 (38)
for a fluid phase, anflsee Eq.(37)]
an p\™ a p |3
n
=2 pey 1_?(p_cp) (39

for a crystal of close-packing densipy, and Madelung con-
stanta,:

To obtain the total free energy of the Heisenberg system,

f="fo+f, we add the magnetic free enerdy, of Eq. (31),
to the vdW free energy, safp, corresponding to the non-
magnetic interactiofVy(rq,) of Eg. (1). The latter was dis-

am=2 (%) ,  m=nk, (40)
J j

cussed in detail if7]. Within the vdwW approximation we with x;=x; and x,; the reduced nearest neighbor distance

have

(P=pep!X3).
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IV. PHASE DIAGRAMS where is the packing fraction. It then results from E¢&6)

- and(27) or Fig. 1 that fort/77>y_me fluid phases are para-
Within the extended vdW theory of Sec. lll, a system Ofmagnetic (n=0), while for t/ < we havem+0 and the

molecules interacting via the pair potent8) of the Heisen- fluid phases are hence ferromagnetic. On the Curie line,

berg model is described by the following reduced Helmholtzt/ — > we have a paramaanetic-ferromaanetic transition
free energy per particld,=F/Ne¢g: 7= P 9 9

which is continuous fot>t; and discontinuous fot<t;
q where{t=t,,7= 7,} denote a tricritical poin{TCP) where
EL(q)—InN(q)], the compressibility divergesdp/dp=0). Using Egs.(46)
and (47), we obtain, for this TCP,

f=t[In(pA3)—1]—tIna(p)— ¢o+t

(41)
. . . . — 1
with g determined by the self-consistency equations ti=vyy, mi=| 1-— TE 3T | Mo (48)
_+_
Y (2 7*)
where 7= (7/6)po0°=0.495 as in Eq. (33, and
where we used the notation of Sec. Ill. For a system ofY* = vé1l o or
number density and reduced temperatute kgT/ €y , EQs. -3 -3
(41) and (42) yield f=f(p,t), and fromf we obtain the y*zyk—S -3 P (49)

pressurep and chemical potentigh using the well-known
thermodynamic relations
where we used Eq38). The point of the Curie lin€47)

, of where the compressibility diverges is termed tricritical, al-
P=€op”—~, un=ef+p/p, (43 though in zero external field the ferromagnetic phase is
p . .
*+m degenerate. In the paramagnetic region=0), Eq.
(46) also embodies the standard liquid-gas transiti@h

_ - _ _ with terminates in the vdW critical poiriCP) with coordi-
mensionless quantities. Below we will also use the packingates ¢, 7,):

fraction »=(m/6)po> as the reduced density variable. The
two-phase equilibrium conditions can then be written 32 7o

tfmﬁm Ne=3

where u= ule, and p=poile, are the corresponding di-

(50)
P1(p1,t)=p2p2,1), (44)

Combining this paramagnetic g@sg)—paramagnetic liquid
ra(p1,)=pa(p2,t), (45 (pl) transition with the above paramagnetic fluigf)—

ferromagnetic fluid(ff) transition, one finally obtains the

where the inc_iexes 1 and 2 refer, respectively, to phases ﬂhase diagram of the fluid phases in the entj¢ plane.
and 2. Equation$44) and (45) are equivalent to the double Using Eqs.(44) and (45), it is easily seen that this phase

tangent construction on the free energies obtained from Eq%ﬁagram does not depend on the three paramétgns,k}
(41) and(42). When more then one transition is possible, theseparately but only on the combinatiop* = 7(n'_é)/
equilibrium transition is found by constructing the Convex . — 3). According to the value of* there are three topo-

envelope to the free energies. logically distinct types of phase diagransee Fig. 2. For
_ o 0< y* <7 =0.55 all the phase diagrams havp@pl tran-
A. Paramagnetic and ferromagnetic fluid phases sition at the higher temperatures, and a first-opigf| (fer-

We first consider the case where both phases 1 and 2 é@magnetic liquid transition at the lower temperatures with
Egs. (44) and (45) are fluid phases. In this case the thermo-the pg-pl transition ending in a CP and the first-ordeg-
dynamics follows from Eqsi41) and(42) by using Eq.(33) fl transition ending in a critical end point where the Curie
for a(p) and (38) for¢, and ¢;. Simple explicit expres- line describing the continuoysf-ff transition hits the first-
sions can again be obtained, such as order phase boundary. Foif <y* <y3=0.85 all the phase
diagrams have pg-fl transition for temperatures below that
of apg-pl-fl triple line. For temperatures above this triple
point temperature there is bottpg-pl transition ending in a
CP and a first-ordepl-fl transition ending in a TCP. For
for the pressure of the fluid phases. In E46) the equilib-  y} <y* <y35=0.727 the TCP temperature is below the CP
rium magnetizationm=m(p,t), is obtained by solving Eq. temperature, whereas the converse is true for
(42), hence yieldingp=p(p,t), as needed for Eq44), and  y% <y* <% . Finally, for y5<y* all the phase diagrams
similarly for u=u(p,t) by using Eq.(43). Here the Curie  contain only a first-ordepg-fl transition ending in a TCP
line t=(2/3)y¢, of Eq. (28) becomes a straight line in the above which it becomes a continuop$-ff transition along

t
= b vy (46

p-t plane,t=(4m/3)(ypa’/k—3), or the Curie line. This scenario is identical to the one found by
Hemmer and Imbrd9], except for the values dfyy,y3}.
o = 8 Indeed, for fluid phases the present theory is identical to that
t=yn, y=y—37% (47)

of Hemmer and Imbro, except for the fact that they did use



55 PHASE DIAGRAMS OF THE CLASSICAL HEISENBERG ... 7247

1.4

1.2 7
m=0 2 m=0

FIG. 2. The three topologically distinct types of phase diagrams in the reduced temperatukgT(e,) reduced density
[ 7= (w/6)0>p] plane as obtained from the free enefgyt) when only fluid phases are consideréa). A critical point (CP: open squayds
seen to separate the low-temperature paramagneti¢pgasind paramagnetic liqui¢pl) phases from the high-temperature paramagnetic
fluid (pf) phases. The Curie lin@ashed lingwhich separates the paramagnetic flg) from the ferromagnetic fluidff) phases ends in
a critical end pointCEP: black dot below which the pg-pl and pf-ff transitions are replaced by a ffefromagnetic liquigl transition.
(The diagram shown here correspondsyto=0.3.) (b) The CEP of diagranta) has been transformed into a tricritical poifitCP: open
circle) where the pl-fl transition ceases to be first order and becomes continuous at higher temperatures. The TCP temperature is below the
CP temperature foy* <0.73, and above it fo* >0.73. There is thus more than one type of phase diagram in this category. In all cases
there is also a pg-pl-fl triple lindThe diagram shown corresponds+y6=0.7.) (c) The pg-pl transition ofb) has become metastable, and
only the pf-ff transition survives(The case shown correspondsiytb=1.2.)

the Carnahan-Starling equation of state to describe the Hthe fluid(f)—solid(s) transition can still preempt thigf-ff
fluid instead of the simple free-volume expressi@8) used transition. To answer the question whethefstable ferro-
here. This difference shifts thdyy,y3} values from magnetic fluid phase is present in the phase diagram, it is
{0.55,0.85, as found here, t90.38,0.63, as found by them. thus essential to include both fluid and solid phases. Before
The Carnahan-Starling equation of state is clearly superior toonsidering the complete phase diagram in Sec. IV C, we
the free-volume approximatio(83) but the latter keeps the devote this section to the case where both phases in(&4)s.
calculations simple enough to allow us to evaluate the coorand (45) are solid phases. The thermodynamics is then still
dinates of the TCHsee Eq.(48)] and CP[see Eq.(50)] given by Egs.(41) and (42), but now using Eq(34) for
explicitly, whereas the former does not. Finally, it is also a(p) and Eq.(39) for ¢o and¢,. The stable lattice structure
worthwhile observing that the present scenario is qualitais seen to be a compact lattice which we take to be of the
tively identical to the one predicted by Zhang and Widomface-centered-cubidcc) type. The resulting solid-solid tran-
[16] and Groh and Dietrich11] for the fluid phases of dipo- sitions are then isostructural fcc-fcc transitid@$. The cor-
lar systems. responding equation of state of these solids can again be
obtained in simple terms from E3), yielding

B. Paramagnetic and ferromagnetic solid phases p t n

- = _ n/3_ _ k/3,+12
From Sec. IVA it is seen that foys<y* the pf-ff  pey  1—(p/pe) ™" g nlPlPep) = g aklplpep) My,
transition preempts theg-pl transition. In a similar manner (51
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FIG. 3. The same as Fig. 2, but for the case where(Ed. is
restricted to solid phases only. Here tpé transition of Fig. 2 is
replaced by an iso-structural transition between an expanded soli
(es and a condensed soligs) of the same compact crystal struc-
ture. The paramagnetiexpanded or condensesolid phasegps)
are separated from the ferromagnetic sdfs) phases by a new
Curie line(dashed ling (a) A new CP(filled squaré terminates the
pes-pcs transition, while a new CEBlack do} terminates the Cu-
rie line of the solids(The case shown correspondse 0.3 and
k=n=6). (b) A new TCP (filled circle) terminates the first-order
pcs-fs transition. There also is a pes-pcs-fs triple lifflne case
shown corresponds t¢=0.4 andk=n=6). (c) Only the ps-fs
transition survives(The case shown corresponds 46=0.6 and

k=n=6).
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n

where «, is the Madelung constant of the fcc lattice for an
inverse power potential of index=(n,k). As can be seen
from Eq. (40), a, tends to 12, the number of nearest neigh-
bors of the fcc lattice, for large values. Here the Curie line
(28) becomes

y= 5 awyl iy (52)

t= 55
with nCpE(W/G)pCpO'SZ w/3\2for a compact lattice. For
t/ 5¥*>7, the solid phases are paramagnetit=0), while
for t/ 5¥3< v, they are ferromagnetion{0). On the Curie

line, t=y7%*3 the paramagnetic solidps ferromagnetic
solid (fs) transition becomes continuous above a new TCP of
coordinates {,, 7,), given by Eq.(51) as

t,= 3’775/3- M2= x3 Nep (53
with x a solution of
1 2 1 n
—§X _5k2 n +§ an . y
(1-x)% 2|3 2yay X (54

Whenn=k, Eq. (54) yields
_<3K—1) 3K—1)2 (K—l) 12
=Tk | ( 3K | | K . (89

k

3

with

2k

2y

5

1—|—k
5 —_

3/

(56)

In the region of the paramagnetic solids£0) there is an
isostructural transition between a paramagnetic expanded
solid (peg and a paramagnetic condensed s@tids which
terminates in a new CP of coordinates ,(7.):

tg:n(1+g any”%, 7e=Y’nep  (57)
3
with y given by
5n+4 5n+4 \2 3n 172
Y=\ain-1) _{(4(n—1) _(Z(n—l)” - (59)

Whereas the overall behavior of the solid-solid phase dia-
grams is similar to that of the fluid-fluid phase diagrams,
¢»me) and (;,7,) being replaced by t(,n.) and
gz,nz), there are two main differences. Because the cohe-
sion energy of the fluid phase is linear in the dengsige Eq.
(38)], the Curie line of the fluid phasdsee Eq.(48)] is a
straight line in the — » plane, whereas the Curie line of the
solid phasegsee Eq.52)] has a nonzero curvature, due to
the nonlinear density dependence of the lattice engsge
Eq. (39)]. Here the Curie lines of the fluid and solid phases
are thus different, whereas 8] they are identical because
the same cohesion energy was used for both the fluid and
solid phasesa practice which goes back to Longuet-Higgins
and Widom[17]). The most important difference, however,
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FIG. 4. The topologically distinct types of complete phase diagrams obtained frotd Bdpy allowing for both fluid and compact solid
phases. The case shown corresponds to a situation where both the malgretjcahd nonmagneticn=6) interactions are long ranged.
The strengths of the magnetic interaction @ey=0, (b) y=0.04,(c) y=0.15,(d) y=0.23,(e) y=0.25, and(f) y=0.3. The meaning of
the symbols is the same as in Figs. 2 and 3.

stems from the fact thaffor the same reasgrthe phase k andn). Therefore we now have again a phase diagram,
diagrams of the solids no longer depend on the parametexgith a CP for 0< y<<vy,(k,n), with both a CP and a TCP for
{y,k,n} through the single combinatiop* of Eq. (49), but  y1(k,n)<y<y,(k,n) and with a TCP fory,(k,n) <y, but
they do now depend explicitly on the ranges of the potentialshe threshold value$y,,y,} now do depend explicitly on
(as set here for the inverse power potentials by their indek andn. For instance, fory;(k,n) we find y,(4,6)=0.192,
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0 0.t 02 03 04 05 06 07 08 0.9

0 01 02 03 04 05 06 07 08 0.9

FIG. 5. The same as Fig. 4 but for long-ranged magnetic interactikrs6) and intermediate-ranged nonmagnetic interactions
(n=12). The strengths of the magnetic interaction &a¢:y=0, (b) y=0.06,(c) y=0.3,(d) y=1.6, and(e) y=3.4.

v1(6,6)=0.325, v,(12,6)=0.365, whereas fow,(k,n) we phase and phase 2 a solid phase, and combine these fluid-
have y,(4,6)=0.254, y,(6,6)=0.52, andy,(12,6)=0.955. solid transitions with the fluid-fluid and solid-solid transi-
An example of the three topologically distinct types of phasetions already considered in the two previous sections. Stated
diagrams is shown in Fig. 3. differently, the fluid-fluid transitions obtained from Edd4)
and (45) correspond to double tangent constructions on the
free energy(41) when the latter is evaluated for the fluid
phase, and similarly for the solid-solid transitions when Eq.
In order to obtain a complete phase diagram we now con¢41l) is evaluated for the solid phase, whereas the fluid-solid
sider the case where in Eqg4) and(45) phase 1 is a fluid transitions correspond to double tangent constructions be-

C. Fluid and solid phases



55 PHASE DIAGRAMS OF THE CLASSICAL HEISENBERG ... 7251

0 0.1t 02 03 04 05 06 07 08 0.9 0 01 02 03 04 05 06 07 0.8 0.9

n n

FIG. 6. The same as Fig. 4 but for intermediate-ranged magnetic interacken80§ and short-ranged nonmagnetic interactions
(n=80). The strengths of the magnetic interaction @&a¢:y=0, (b) y=0.1, (c) y=0.55, and(d) y=0.7.

tween the free energy of the fluid and that of the solid. Wher(n=12)-long k=6) case(see Fig. 5. Here there are two
more than one double tangent construction is possible, theew types of phase diagrams containing a stable ferromag-
complete phase diagram is obtained from the convex enveretic liquid. Finally we consider the shortn€80)

lope to the free energies. Since the solid-solid transitions da.jntermediate K=60) case(see Fig. & where none of the
depend on the three paramet¢nsn,k} separately, so will  new types of phase diagrams contains a stable ferromagnetic
the complete phase diagrams. We know fromthat when jiquid. The latter phase is thus clearly seen to be favored by

y=0 there are three topologically distinct types of phasencreasing the range of the nonmagnetic and magnetic inter-
diagrams according to the value of(k is irrelevant when  4.tions.

y=0). For long-ranged interactions {h<n;=7.6) the
phase diagram exhibits thé.( 7.) critical point of Eq.(50),
for intermediate-ranged interactions;&<n<n,=67) there
is no critical point, whereas for short-ranged interactions We have considered the phase behavior of a classical sys-
(n,<n) it exhibits the €.,7n.) critical point of (57). We  tem of particles interacting via botlisotropig nonmagnetic

now take an value corresponding to each category sepainteractions and(anisotropi¢ magnetic exchange interac-
rately (sayn=6, 12, and 8pand start increasing the value of tions. Such a system constitutes an off-lattice or continuous
v. The sequence of phase diagrams generated in this wasersion of the well-known Heisenberg model of magnetism
depends still on the value & Here it will suffice to con- [1] and, as such, could be considered as a rough approxima-
sider a few specifi& values which nevertheless cover all the tion to more realistic systems. This Heisenberg fluid is
possible topologically distinct cases. First we consider th&nown, for instance, to mimic rather well the behavior of
long (n=6)—long k=4) case where both the value of dipolar fluids without having to cope with the difficulties
andk correspond to long-ranged forces. This case alone genntrinsic to such fluid$10,17. It is thus a good candidate for
erates(see Fig. 4 all the phase diagrams obtained [i@. studying the influence of the potential parameters on the oc-
Three of them contain a region where the ferromagnetic ligcurrence of a ferromagnetic liquid in the phase diagram. To
uid phase is stable. Next we consider the intermediat@btain these phase diagrams, here we used a simple exten-

D. Conclusions
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sion of the original van der Waals theofy]. As is well  able[6,12]. On this basis we have found that the phase dia-
known, in van der Waals theory the free energy is written aggrams do depend not only on the relative strength of the
the sum of a free-volume entropy term describing the repulmagnetic and nonmagnetic interactions but also on the range
sions and a mean-field energy term describing the attractionsf these interactions. For instance, it is found that at given
[2]. What distinguishes the van der Waals theory used hergelative strength of the magnetic interaction, the ferromag-
[7] from other approachef9,17] is the fact that both the netic fluid phase is favored by increasing the range of either
free-volume entropy and the mean-field energy have a difthe magnetic or nonmagnetic interactions. This in turn could
ferent density dependence according to whether the phasge|| explain why simulations using interactions which are

considered is a fluid or a solid phase. In the presence of theyt off at finite rangd 12] have difficulties in findingstable
magnetic exchange interactions this difference impliesferromagnetic fluid phases.

moreover, that the Curie lines of the fluid and solid phases
have a different density dependence. The resulting theory is
nevertheless very simple and flexible. It is also fairly realistic
since the resulting phase diagrams mimic very closely those M.B. acknowledges financial support from the Fonds Na-
obtained from more sophisticated theories, whenever avaikional de la Recherche ScientifiqgBelgium).
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